Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT’14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM’s performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Deep Neural Networks (DNNs) are extremely powerful machine learning models that achieve excellent performance on difficult problems such as speech recognition [13, 7] and visual object recognition [19, 6, 21, 20]. DNNs are powerful because they can perform arbitrary parallel computation for a modest number of steps. A surprising example of the power of DNNs is their ability to sort N N-bit numbers using only 2 hidden layers of quadratic size [27]. So, while neural networks are related to conventional statistical models, they learn an intricate computation. Furthermore, large DNNs can be trained with supervised backpropagation whenever the labeled training set has enough information to specify the network’s parameters. Thus, if there exists a parameter setting of a large DNN that achieves good results (for example, because humans can solve the task very rapidly), supervised backpropagation will find these parameters and solve the problem. Despite their flexibility and power, DNNs can only be applied to problems whose inputs and targets can be sensibly encoded with vectors of fixed dimensionality. It is a significant limitation, since many important problems are best expressed with sequences whose lengths are not known a-priori. For example, speech recognition and machine translation are sequential problems. Likewise, question answering can also be seen as mapping a sequence of words representing the question to a 1 sequence of words representing the answer. It is therefore clear that a domain-independent method that learns to map sequences to sequences would be useful. Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and outputs is known and fixed. In this paper, we show that a straightforward application of the Long Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems. The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixeddimensional vector representation, and then to use another LSTM to extract the output sequence from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model [28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully learn on data with long range temporal dependencies makes it a natural choice for this application due to the considerable time lag between the inputs and their corresponding outputs (fig. 1). There have been a number of related attempts to address the general sequence to sequence learning problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18] who were the first to map the entire input sentence to vector, and is related to Cho et al. [5] although the latter was used only for rescoring hypotheses produced by a phrase-based system. Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to focus on different parts of their input, and an elegant variant of this idea was successfully applied to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another popular technique for mapping sequences to sequences with neural networks, but it assumes a monotonic alignment between the inputs and the outputs [11]. Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the input sentence in reverse, because doing so introduces many short term dependencies in the data that make the optimization problem much easier. The main result of this work is the following. On the WMT’14 English to French translation task, we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep LSTMs (with 384M parameters and 8,000 dimensional state each) using a simple left-to-right beamsearch decoder. This is by far the best result achieved by direct translation with large neural networks. For comparison, the BLEU score of an SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the reference translation contained a word not covered by these 80k. This result shows that a relatively unoptimized small-vocabulary neural network architecture which has much room for improvement outperforms a phrase-based SMT system. Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline by 3.2 BLEU points and is close to the previous best published result on this task (which is 37.0 [9]). Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other researchers with related architectures [26]. We were able to do well on long sentences because we reversed the order of words in the source sentence but not the target sentences in the training and test set. By doing so, we introduced many short term dependencies that made the optimization problem much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with long sentences. The simple trick of reversing the words in the source sentence is one of the key technical contributions of this work. A useful property of the LSTM is that it learns to map an input sentence of variable length into a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the source sentences, the translation objective encourages the LSTM to find sentence representations that capture their meaning, as sentences with similar meanings are close to each other while different 2 sentences meanings will be far. A qualitative evaluation supports this claim, showing that our model is aware of word order and is fairly invariant to the active and passive voice.
Read the rest here.